
90 Z H U R N A L  P R I K L A D N O I  M E K H A N I K I  I T E K H N I C H E S K O I  F I Z I K I  

SOME CHARACTERISTIC FEATURES OF DIFFUSION OF A MAGNETIC FIELD INTO A MOVING 
CONDUCTOR 

E. I. Bichenkov 

Zhurnal Prikladnoi Mekhauiki i Tekhnicheskoi Fiziki, Vol. 8, No. 1, pp. 132-133, 1967 

ABSTRACT: The study of the diffusion of a magnetic field into a mov- 
ing conductor is of interest in connection with the production of u!t~ ~- 
high-strength magnetic fields by rapid compression of conducting 
shells [1, 2]. In [3,4] it is shown that when a magnetic field in a plane 
slit is compressed at constant velocity, the entire flux enters the con- 
ductor. In the present paper we formulate a general result concerning 
the conservation of the sum current in the cavity and conductor for 
arbitrary motion of the latter. We also consider a special case of con- 
ductor motion when the flux in the cavity remains constant despite the 
finite conductivity of the material bounding the magnetic field. 

NOTATION 

~'z, ~* is the flux which has diffused into the conductor, ~z is r_he 
flux in the cavity, ~0 is the sum flux, r is the radius, r. is the cavity 
boundary, 6 is the thickness of the skin layer, 5(0 is the delta function 
of r, t is the time, q is the intensity of the fluid sink, v is the velocity, 

is the flux which has diffused to a depth larger than r, x is a 
self-similar variable, ~o is the dimensionless fraction of the flux which 
has diffused to a depth larger than r, ~o. is the fraction of the flux which 
has diffused into the conductor, cr is the conductivity, c is the electro- 
dynamic constant, R m is the magnetic Reynolds number, g is a dimen- 
sionless parameter. 

z = n r  2 / qt,  eO = q) / q)o, Ix = ~q  / c 2. 

w Conservation of the sum flux during diffusion of a magnetic 
field into a moving conductor. The problem of diffusion of a magnetic 
field out of a cavity filled with a moving conductor reduces to solving 
Maxwell's system of equations in a moving conductor which satisfies 

certain conditions at infinity and the condition of continuity of the 
fields at the cavity boundary [3]. It is easy to establish that at low ve- 
locities (v << c) and high conductivities the sum of the flux r which 
has diffused into the conductor and the flux r in the cavity is con- 
stant at any instant, i . e . ,  that 

~l(t) + ~ ( t )  = ~0,  

provided the conductor is of infinite extent and that the field is always 
zero at infinity. This is a simple consequence of the law of induction, 
since under these conditions the circulation integral of the magnetic 
field intensity over an infinite contoux becomes zero, with the result 
:hat the derivative of the magnetic flux through such a comoux with 
respect to time also equals zero. This means that the sum flux in the 
cavity and conductor is conserved. 

w h special case of conductor motion. Constancy of the flux in 
a cylindrical cavity. There are special cases of conductor motion when 
not only the sum flux, but also the flux in the cavity, remain constant 
despite finite conductor conductivity. There is no flux leakage from 
the cavity when the field in the conductor varies in the same way with 
time due to ira motion and to the diffusion of the flux which has pene- 
trated into it, as does the field In the cavity due to the variation of 
cavity size alone. In the absence of flux leakage from a cylindrical 
cavity, the field in the cavity is H ~ 1/r 2 and the field in the conduc- 
tor H ~ i /r6,  where r is the radius of the cavity and 6 is the thickness 
of ~he ddn layer. This implies that the above effect can occur if r ~ 
~ 6, L e, ,  if the variation of cavity size with time is the same as the 
time-dependent increase in skin layer: thickness. If r ~ (t)~/~ , then 
the thickness of the skin layer is also proportional to (t)~/z , since dif- 
fusion of the field into the conductor extends to a depth proportional 
to (t)l/z, and since transfer of the field with the moving conductor is 
in this case also proportional to (t)~/s. 

The condition r ~ (t)r/z for an incompressible conducting liquid cor- 
responds to the case of a single source or sink of constant intensity q. 

Let the sink lie at intensity, i . e . ,  let the cavity expand. Then 

V =  q / 2 ~ r ,  r . ~ =  qt / rc . 

The equation of diffusion of the magnetic flux in this case is 

O:3 

Ot q - 2 n r  Or - - 4 n z r  Or r Or ~ P = 2 ~  r l t d r  
r 

Here ~ is the flux which has diffused to a depth 7 "~ger than r by a 
c -ain instant. The conditions of conservation of th flux and con- 
t~na ~y of the magnetic field, 

r 0 7  r = r ,  (I) (r, t) I . . . . .  = * *  (t), 0 0  - -  O ,  (t) = - -  ~ -  

must be fulfilled at the cavity boundary. 
If we assume that the flux at the initial instant is equal to zero 

only at the axis, i . e . ,  if 

r (r, O) = r  09 ,  

then the problem is self-similar and reduces to finding (for 1 -< x < .0) 
the solution of the equation 

~-lzq/' = (t --  ~) q~' (t ..< z < oo) (2.1) 

~ch satisfies the conditions 

cp = 0 as x --* c~, cp [x=i = tp,, t - -  ~p. = - -  (xqY) lx=t. (2.2) 

Here we have introduced the self-similar variable x = 7rrZ/qt and 
the dimensionless flux in the conductor ~o = @/~0. The parameter 

IX = ~ 7 / c 2 

is related to the magnetic Reynolds numbe r R m [5] by the expression 
It = Rm/2. The boundary of the cavity is defined by the condition 
x = 1. The condition of continuity of the magnetic field at the cavity 
boundary (condition (2.2)) implies that ~o, = const, i . e . ,  that the frac- 
tion of the flux which has diffused into the conductor remains constant 
during expansion of the cavity, as a result of which the flux in the cav- 

ity is also constant. 
The solution of Eq. (2.1) which satisfies the condition at infinity is 

r o 
(p = C ~. xV'e -p'x d x  �9 

The conditions at the cavity boundary imply that 

1 1 

(2.3) 

From (2.3) we readily infer that 

% = 1 --  ~1§ (t + 0 (~)) for ~ ~ 1. 

Using the Laplace method [6] to estimate the integral in (2.3), we 
obtain 

V 
-y  

c p , =  ~ g - ~  for ~ > ~ t .  
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The above example shows that in our special case of conductor 
motion the flux in the cavity can remain constant, differing from the 
original flux by quantities on the order of 1/(/1) 1/2 for high velocities 
and having a value on the order of ~l+u for Iow velocities. 

The above effects have direct analogs in the corresponding prob- 
lems of heat conduction. 
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